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SUMMARY

The theory of block designs is composed of some general ideas, various properties,
and different models. In this note we show interrelations between them indicating,
in particular, their sensibility and usefulness in specific experimental situations. We
start from the most classic fixed model, which seems to be the main source of the
whole theory, and end with mixed randomized models, which were widely discussed
by Professor Tadeusz Califiski through the last decade.
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1. Introduction and preliminaries

The main concept of the block design theory is, of course, a block. It is a collec-
tion of some units forming a base for comparing the treatments. In the case of field
experiments, the units are plots and the treatments are varieties, fertilizers, growing
conditions etc. To make the comparisons precise, the plots in blocks should be ho-
mogeneous. In the most ideal situation, all plots of each block should be identical
with respect to the size, natural fertility, shading, natural soil humidity etc. The
plots from different blocks can differ. Having such blocks, the experimenter applies
chosen treatments on the plots. Each plot receives one treatment, and produces one
observation.

*The paper was submitted on the occasion of 70-th birthday of Professor Tadeusz Califiski.
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The vector y of all observations, obtained from a block design experiment with
identical plots in each block, can be modeled by the equation

y=1lu+A'r+D'B +¢, (1)

where p is an unknown parameter common to all n measurements, T is a v-vector of
unknown treatment effects, 3 is a b-vector of unknown block effects, € is a standard
n-vector of random errors, while 1, A’ and D’ are the n-vector of units, the nxv known
design matrix for treatments, and the n x b design matrix for blocks, respectively.

The relations between blocks and treatments are also uniquely reflected by the
v X b incidence matrix N,

N = AD/, 2)

in which the ¢j-th element, n;;, is equal to the number of plots in the j-th block
receiving the i-th treatment. Summing the columns of N, we obtain the v-vector r of
replications, N1 = r, and summing the rows of N, we obtain the b-vector k of block
sizes, N'1 = k.

In the statistical analysis of data from the block design, the key role plays the
v X v matrix C. It has the form

C=r®-NKk°N, (3)
where r® = AA’ and k% = (DD’)~!. The matrix C can also be expressed as
C=AsA, (4)
where
¢=1-D'k°D (5)

is an orthogonal projector, i.e. ¢ =¢ = ¢'.

2. Connectedness

The main combinatorial property of a block design is its connectedness, as introduced
by Bose (1950). This concept can be defined as follows. Two blocks are directly
connected if they have a common treatment, and are connected if they can be joined
by a chain of directly connected blocks. A block design is connected if all its blocks
are connected. The most important result related to this property is as follows.

THEOREM 1. The block design is connected if and only if r(C) = v — 1, where r(C)
denotes the rank of C.

Although the definition of connectedness gives the simplest way of verifying this
property, Theorem 1 exhibits a direct relation between this combinatorial property
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and the matrix C of the design. This property is also simply related with the incidence
matrix, defined in (2). If the design is connected, then its incidence matrix N can
not be transformed to a block-diagonal form, by permuting its rows and/or columns.
Finally, it should be noted that connectedness is the property which is applicable also
beyond the scope of the block design theory.

3. Estimability

The aim of the experiment is to discover the differences between effects of treatments.
They can be observed from expected measurements, if it is possible to eliminate the
effects of blocks. Let E(y) denote the expectation vector of y. Then, from (1), we
have

E(y)=1u+A'Tr + D'B. (6)

To eliminate block effects, we can use the orthogonal projector ¢ given in (5). Since
¢D’'= 0, which implies also ¢1 = 0, from (6) we have

PE(y) = pA'T. (7)

Since ¢E(y) =E(¢y), the equality (7) proves that all functions ¢A’r can be estima-
ted unbiasedly by linear transformation of y. This means that functions PA'T are
estimable, which is a statistical property originally introduced by Bose (1944). Mo-
reover, since functions ¢A’r depend only on treatment effects, they form the main
object of the analysis. The product ¢pA’ is an n x v matrix, and it is called the
adjusted design matrix for treatments (cf. Califski and Kageyama, 1996). Therefore,
in the set ¢A’'T we have n estimable functions of treatment effects. Note, moreover,
that all of them are contrasts, since Al = ¢1 = 0. On the other hand observe,
that between v objects there are at most v — 1 linearly independent contrasts. Thus,
the set ¢A’T can be significantly reduced. It is shown in the following

THEOREM 2. The function p'T of treatment effects is estimable if and only if p €R(C),
where R(C) denotes the range of C.

The most longed situation is, however, characterized by
THEOREM 3. All treatment contrasts are estimable if and only if r(C)=v—1.

Comparing now Theorem 1 with Theorem 3, we can conclude that the block
design is connected if and only if all treatment contrasts are estimable. This is the
most famous statement of the block design theory, revealing the statistical sense of
combinatorial property.
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4. Existence of BLUE

From previous discussion we have the following practical conclusion. The estima-
ble functions of treatment parameters are contrasts of the form ¢pA’r or Cr. Their
unbiased estimators are ¢y or Ay, respectively. But, which is better? The question
about the existence and the form of the best linear unbiased estimator (BLUE) of
estimable functions is closely related to the dispersion matrix of observations. In our
simple model, when the selection of units into blocks is perfect and only standard
technical errors are considered, the dispersion matrix of y is 621, where o2 is a com-
mon error variance. This means that the BLUE of any estimable function can be
determined by the least squares method. Therefore, in the context of a simple block
design model, we can formulate the following

THEOREM 4. For each estimable contrast there exists BLUE, which follows from the
least square method.

The least square method is directly connected with the normal equations, which
again are related to the matrix C defined in (3) or (4). Namely, after eliminating
block effects, they take the form

Cr°= Agy, (8)

where 7° is the least squares estimate of 7. Thus we can say that the BLUEs of Cr
contrasts, corresponding to the left hand side of (8), are supplied by their right hand
side Agy.

The next result establishes one more statistical property of the matrix C. Under
the simple block design model, the following holds.

THEOREM 5. The dispersion matriz of the BLUE of Cr is proportional to the
matriz C.

So we see, that the best estimation is closely connected with the matrix C.
Also the BLUE of ¢A’r can be expressed by a solution of (8). It has the form
PA'C~ Agy, where C~ is a g-inverse of C.

5. Balance

The balance is a property, which has variety of meanings. It can be related to purely
combinatorial features of the blocks as well as with properties of the BLUE. We restrict
our discussion only to the variance balance property originated by Vartak (1963) (cf.
Calinski and Kageyama, 1996), which has a direct statistical sense. A block design
is variance balanced if the BLUE of every estimable treatment contrast p’r, such
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that p’p = 1, has the same variance. The relation of this concept with the matrix C
reveals the following

THEOREM 6. The block design is variance balanced if and only if C =\C2,

Under the condition of connectedness, the characterization contained in Theorem
6 gives the equality

C =MI - (1/v)11'}, (9)
which is sometimes considered as a definition of variance balance. This seems an
unfortunate approach, since the matrix algebra plays only supporting role both in
combinatorial and statistical theory. Note, moreover, that in accordance with the

definition, precisely stated by Califiski and Kageyama (1996), the variance balance
property has sense only if BLUE of Cr exists and Theorem 5 holds.

6. Randomization of plots

The results contained in the previous sections are valid under the simple fixed model.
It is justified, if plots in each block are perfectly selected, and thus can be considered
as equal. This requirement, however, is never met in field experiments, since the
plots are created by nature and the experimenter has a very limited possibility of
their selection. In such case, when plots in blocks are not equal, the only remedy is
a randomization. If we conduct this process for plots in each block, then we equalize
them in probabilistic sense.

After applying treatments to randomly chosen plots, the expectation vector of
observations will be the same as in {6). In consequence, the estimability criterion is
not changed. The randomization of plots inside the blocks introduces, however, some
changes in the structure of the dispersion matrix. It can be expressed (cf. Kala, 1991)
as

D(y) = diaglo ;{Ix; — (1/k;)11'}] + 0°L, (10)
where k; is the size of the j-th block, while oi'j is the variance of plots forming the
j-th block. As we see, there are b extra variance components in the new, more realistic
model. Each component characterizes one separate block and reflects the differences
which were not eliminated while selecting plots into blocks. The relations between
these components are very important from the statistical point of view. If they
are different, there is no BLUE for the set of all estimable treatment contrasts Cr.
However, we can estimate them by Ag¢y, i.e. by the least squares method, which
ensures at least unbiasedness. If the variance components o2 j»J=12,..,b, are all
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equal, i.e. if
2 _ 2 . _ 2 __ 2
Oul =0y 2= .. =0, = O (11)

then (10) reduces to the form
D(y) = o2 +0’L (12)

In consequence, the BLUE of Cr exists. It is again the least squares estimator A¢y.
Moreover, its dispersion matrix will be proportional to the matrix C, as in Theorem
5, which preserves the sense of variance balance property. Thus, the homogeneity of
variances aﬁ.j, J=1,2,...,b, expressed by the condition (11), does not change the
estimation procedure, but it decides about statistical properties of the least squares
estimates.

7. Complete randomization

Randomization of plots inside the blocks introduces some comfort in preparing the
plots. The experimenter is not forced anymore to select identical plots to each block.
The plots in blocks can vary. However, he should worry about their homogeneous
spread over all blocks. If the variances of plots from different blocks are comparable,
the optimal properties of the least squares estimates are preserved. If not, they
are lost. In the latter case, the randomization of blocks is usually proposed (cf.
Nelder, 1954, White, 1975, Calinski and Kageyama, 1988, 1991). It is quite radical
procedure, since such randomization statistically equalizes whole blocks. It means
that the individual effects of blocks disappear from the expectation. Now, it takes
the form

E(y)=1u+ A'r. (13)
In such case, all contrasts are estimable, disregarding the connectedness of the design.

Therefore, Theorem 2 is not valid. The set of these contrasts can be expressed as
@oA'T, where

¢o=1— (1/n)11’ (14)
is an orthogonal projector eliminating x from the expectation (13), or, in the reduced
form, as Co, where Cyp = A¢,A’. Their least squares estimator is Agyy. It is
unbiased, but, in general, not the best.

The second consequence of the randomization of blocks is contained in the di-
spersion structure of y. Now, it can be expressed (cf. Kala, 1991) as

b
D) =3 Y02 (T~ (1/k)D'D} + (DD - ()11} + 0%, (15)
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where o2 is a variance between blocks. The variance components aﬁ.j, 7=12..b,
reflecting the variability of plots inside blocks, are spread here over all units, rather
than are located in diagonal subblocks, as it was in (10).

In the model with expectation (13) and dispersion matrix (15), the existence of
BLUE does not depend on the relation between the unknown variance components
aﬁ.j, J=1,2,..,b, but it depends on the design. In particular, if R(D'D¢,A’) C
R(A), the BLUE exists for all treatment contrasts Co7, which coincides with its least
squares estimator A¢yy. When we restrict to the contrasts Cr, then A¢y will be
their best estimator, if R(¢A’) C R(A’). Thus, the most promising statistics can be
the BLUEs in the model with complete randomization only under special conditions.

8. Intra block model

In almost all cases we have transformed the vector of observations y by the orthogonal
projection ¢ defined in (5). The expectation of the resulting vector has the form

E(¢y) = pA'T, (16)

which is the same for all considered models. The dispersion matrix of the trans-
formed observations @y depends on the assumed dispersion matrix D(y). But it is
proportional to the matrix ¢ for the fixed model, the model with randomized plots
and homogeneous variances 012‘.]., Jj = 1,2,..,b, and for the model with complete

randomization. Let us say, it has the form

D(¢y) =’ ¢, (17)

where o is an unknown variance. This is the intra-block model (cf. Califiski and
Kageyama, 1988, 1991). In such a model the BLUE of Cr exists. It coincides with
the least squares estimator A¢y, and has the dispersion matrix proportional to the
matrix C. Thus, the variance balance property preserves sense and the criterion of
Theorem 6 can be applied.

2

9. Conclusions

Throughout the previous sections we have discussed six leading results from the block
design theory. They were related to connectedness (Theorem 1), estimability (Theo-
rems 2 and 3), best estimation (Theorems 4 and 5), and balance (Theorem 6). All of
them involve the matrix C of the design. The designs, however, can be modeled diffe-
rently, depending on the knowledge about the experimental material and the applied
randomization procedure. The validity of the results in different models is marked
in Table 1.
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Table 1. Validity of Theorems 1 - 6 in different models

Model Theorem
E(y) D(y) 1 2 3 4 5 6
Standard 6 o1 v V v v
Randomized plots 6) () v notY not not
Randomized plots with (11) (6) (12 v Vv Vv v oV
Completely randomized (13) (15) / not? not? not® not not
Intra-block 1) a0 v v v v v

DBLUE does not exist
2) All contrasts are estimable

3)BLUE exists in special designs only

Summing up the above discussion we can say that connectedness is not always
equivalent to estimability of all treatment contrasts. The model with complete ran-
domization is the exception. Moreover, we can observe that the classic least squares
method confirms its usefulness. In the cases of three models, it gives the BLUE.
In the case of the model with randomized plots, the BLUE, in general, does not exist,
however, the least squares method supplies the reasonable unbiased estimates. In the
model with complete randomization, the existence of the BLUE is limited by special
conditions. But, if they are satisfied, the BLUE again follows from the least squares
method. Such a conclusion can also be drawn from the fact that in all models, except
the intra-block one, the set of admitted dispersion matrices involves o2I. If the BLUE
exists in such case, it must be equal to the least squares estimate (cf. Kala, 1981,
1990).
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O wlasno$ciach i modelach w teorii ukladéw blokowych

STRESZCZENIE

Teoria ukladéw blokowych obejmuje kilka ogélnych idei, wiele wlasnosci i szereg
réznych modeli. W pracy ukazano laczace je zwiazki, a w szezegdlnoéci ujawniono
ich sens i przydatnoé¢ w nawigzaniu do konkretnych warunkéw eksperymentalnych.
Rozwazania rozpoczyna klasyczny model z efektami stalymi, ktéry wydaje sie stano-
wié podstawg calej teorii. Prace koficzg modele mieszane uwzgledniajgce randomi-
zacjg, ktére byly szeroko dyskutowane w ostatnich dziesigciu latach przez Profesora
Tadeusza Calinskiego.

SLOWA KLUCZOWE: sp6jnos¢, estymowalnosé, najlepszy nieobciazony estymator
liniowy, zréwnowazenie ze wzgledu na wariancje, randomizacja.



